Aura Validation Meeting, 21 – 23 September 2005

Nathaniel Livesey

Lucien Froidevaux and other MLS team members.

Jim Elkins — NOAA CMDL.

Claire Waymark, Anu Dudhia — Oxford University.

Kaley Walker — University of Waterloo, & other ACE team members.

Elliot Atlas — University of Miami.

[livesey@mls.jpl.nasa.gov]

22nd September 2005

Overview of the EOS MLS N₂O product

This talk describes Nitrous Oxide (N_2O) data produced by version 1.51 of the EOS MLS data processing algorithms. These data are taken from observations of N_2O emission at 652.7 GHz. The v1.51 N_2O observations are useful between 100 and 0.1 hPa. Thick clouds in the upper troposphere have no discernible impact on the lower stratospheric observations. ☐ Profiles are retrieved on a grid with pressure as the vertical coordinate. \square N₂O abundances are reported at six pressure levels per decade change of pressure (\sim 2.5 km). ⇒ This coarsens to three per decade for pressures smaller than 0.1 hPa. The true vertical resolution of the N_2O is close to this in the mid stratosphere, but worse (\sim 5 – 6 km) in the lowermost stratosphere and upper mesosphere. Horizontally, profiles are spaced by 1.5° great circle angle along the orbit track $(\sim 160 \text{ km}, 24.6 \text{ s}).$

MLS N₂O radiances

- \square This plot shows typical observed radiances for MLS N₂O.
- The horizontal axis is 'intermediate frequency' in GHz.
- \Box Spectra shown are for typical limb tangents at 100 hPa, 30 hPa, and 10 hPa.
- \Box The N₂O line is the feature close to 10 GHz.
- \Box The two strong features either side are emission from ozone.
 - \Rightarrow Uncertainty in the spectroscopy of these lines is a limitation on the v1.51 N₂O accuracy in the lower stratosphere.
- ☐ Other significant emitters in this region are nitric acid, various excited/isotopic ozone molecules and (in the upper troposphere / lower stratosphere) the water vapor continuum.

Typical radiance fits

EOS MLS Radiance Measurement, R4:640.B12F:N2O.S4.FB25-12 (18-Aug-2005 data) MLS-Aura_L1BRADG_v01-51-c01_2005d230.h5 minus MLS-Aura_L2FWM-GHz_v01-51-c01_2005d230.h5

Dots=Average, Thick Lines=rms about mean, Shading=Standard Deviation (+/-), Thin Lines=Extrema, Diamonds=Est. Precision, Half Asterisk on plot border indicate data off the plot range

Produced filename MLS-Aura_L1BRADG-B12_v01-51-c01_2005d230.h5.Spectrum.diff-B12-CorePlusR4B_v01-51-c01.ps

Produced on 23-Aug-2005 16:55:38, v1.48

Zero order validation – sanity checks

- The plot on the right is an equivalent latitude / theta mean of MLS N₂O for 28th January 2005 as a zero order 'sanity check'.
- ☐ This is part of one of our standard sets of plots of MLS data.
- The northern polar winter vortex is clearly well defined and the values look appropriate for N_2O .

- This histogram is all 68 hPa MLS N₂O for February 2005 between 20°S and 20°N.
- ☐ Variability should be low in this region.
- ☐ As expected, scatter in measurements is dominated by Gaussian radiance noise.
 - Observed scatter is somewhat less than precision reported (dotted Gaussian).
 - This is due to the nature of the smoothing constraints used.

Comparisons with HNO₃ and GMAO P.V.

- \square The seasonal evolution of the northern polar vortex is well captured by MLS N₂O and agrees well with both the HNO₃ and the GMAO PV.
- $lue{}$ The agreement around the time of the vortex break-up is particularly striking.

Anomalies in v01.51 N₂O

- ☐ This plot shows MLS N₂O at 100 hPa vs. latitude for 31st January 2005.
- \Box The colored symbols illustrate anomalous N_2O retrievals.
- ☐ The red symbols indicate cases where the retrieval has converged to an inappropriate solution.

- These are flagged by an off-line algorithm, and the flags are available to users.
- ☐ This problem only affects data at 100 and 68 hPa.
- ☐ The blue points are cases where the retrieval has failed to converge to any useful solution.
- \Box The values are left close to the *a priori* (smooth variations with time).
- ☐ Most of these are caught by applying the quality threshold detailed in the data quality document.

Discussion of comparisons shown

- ☐ While MLS measurements are fundamentally on pressure coordinates, most correlative measurements have height as their coordinate.
- ☐ MLS does retrieve geopotential height (based on the pressure/temperature retrieval and spacecraft pointing).
- ☐ This can be used to map between the MLS and correlative space.
- ☐ While some correlative sources include pressure as a product, I have opted for uniformity, to stick with this approach.
 - □ It was not clear for some of the measurements how to relate the pressure and mixing ratio products.
- ☐ All these comparisons are unsophisticated 'closest coincidence' comparisons.
- \square My matching criteria are $\pm 1^{\circ}$ latitude, $\pm 8^{\circ}$ longitude and ± 12 hours.
 - \Rightarrow For the ASUR case it's $\pm 2^{\circ}$, $\pm 4^{\circ}$ and ± 2 hours.

In-situ comparisons from balloon

- Red profile with error bars is closest MLS profile.
- ☐ Black line is balloon data appropriately interpolated to the MLS pressure grid.
- ☐ The agreement is excellent, well within the MLS error bars.
- \Box Little more can be done with a single profile comparison such as this.

In-situ comparisons from the June AVE

- ☐ MLS (red) compared to WAS data (cyan, provided by Elliot Atlas) from 13 June 2005 AVE WB-57 flight.
- ☐ This WB-57 flight was planned to fly under the MLS track.
- \Box There is little vertical overlap between the MLS and WB-57 N_2O data.
- ☐ We see excellent agreement for all the points, well within the MLS error bars.
- ☐ Other, geographically more distant comparisons are still excellent.
- \Box Given what we've seen above, and the expected behavior of N₂O, we would pretty much expect this level of agreement, but it's nice to see it nevertheless.

Representative comparisons with PAVE/ASUR

- \Box Black line is ASUR with estimated precision (error bars) and accuracy (shading).
- □ Red line is MLS (interpolated to the ASUR heights via MLS geopotential height).
- ☐ Green line is MLS data multiplied by the ASUR averaging kernels.
 - ⇒ This is the unfamiliar way round, because the ASUR resolution is poorer than that of MLS.
- ☐ Left hand case shows excellent agreement.
- ☐ Middle case shows that factoring in the ASUR resolution significantly improves the comparison.
- \square Right hand case shows example of poorer agreement (but still within $\sim 2\sigma$).

Summary of PAVE/ASUR comparisons

- ☐ Plots to right summarize all27 PAVE/ASUR coincidences.
- Some significant biases are evident.
- ☐ MLS is 10 20% higher than ASUR below 20 km.
- \square At 20–30 km, MLS is 20–40% lower than ASUR.
- Above that, agreement is within a few ppbv.

- ☐ The various manipulations (averaging kernels etc.) make computing the expected levels of agreement somewhat tricky.
- \square The disagreement below $\sim 30 \, \text{km}$ is probably statistically significant.

Comparisons with ACE

- □ Kaley Walker will be talking about MLS/ACE N₂O comparisons in more detail.
- ☐ The top plot shows global mean MLS (red) and ACE (blue) comparisons.
 - ⇒ Error bars are for individual profiles.
- ☐ The bottom plot shows the percent absolute differences (dots) and rms differences (triangles).
- MLS appears consistently about 10% lower than ACE. The scatter between the two is about 15% in the lower stratosphere, increasing higher up (mainly due to decreasing N₂O values).

Comparisons with ODIN/SMR — scatter plots

Comparisons with ODIN/SMR — summary

- ☐ Mean is over 2346 comparisons. Biases are clearly statistically significant.
- MLS and SMR agree to within 10−15% over most of the stratosphere, with MLS generally reporting lower abundances.

Comparisons with MIPAS — scatter plots

- We have obtained MIPAS data for 28th January 2005 (three orbits).
- ☐ These are "Preliminary Oxford Retrievals" from Claire Waymark at Oxford University.
- □ As for ODIN, we see MLS (black) and MIPAS (cyan) scattered vs. latitude for coincident profiles.
- MIPAS N₂O seems higher than MLS in the lower stratosphere, particularly in the tropics.

Comparisons with MIPAS — summary

- ☐ Agreement with MIPAS is a little worse than with ODIN/SMR.
- \square MLS and MIPAS seem to differ by about 20%, with MLS reporting lower N₂O abundances.

Conclusions and future work

- \square Version I.51 MLS N₂O observations seem very reasonable. ☐ A few anomalies, described in the quality document, should be borne in mind. Comparisons with in-situ observations show excellent agreement. \square Comparisons with ASUR show 20 – 40% disagreements. \square Comparisons with other satellite instruments are generally within 10-20%, with MLS generally lower than the other instruments. The 190 GHz 'diagnostic' N_2O product shows less bias in the mid- and upper stratosphere, but strong biases are clear in the lower stratosphere. ☐ Priorities for version 2 are: ⇒ Refine spectroscopy information in the 640 GHz region (particularly the contaminating O_3 lines).
 - ⇒ Fix poor convergence and non-convergent cases.

⇒ Investigate other potential sources of bias.